首页> 外文OA文献 >Predicting the Category and Attributes of Mental Pictures Using Deep Gaze Pooling
【2h】

Predicting the Category and Attributes of Mental Pictures Using Deep Gaze Pooling

机译:用深度凝视池预测心理图像的类别和属性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Previous work focused on predicting visual search targets from human fixations but, in the real world, a specific target is often not known, e.g. when searching for a present for a friend. In this work we instead study the problem of predicting the mental picture, i.e. only an abstract idea instead of a specific target. This task is significantly more challenging given that mental pictures of the same target category can vary widely depending on personal biases, and given that characteristic target attributes can often not be verbalised explicitly. We instead propose to use gaze information as implicit information on users' mental picture and present a novel gaze pooling layer to seamlessly integrate semantic and localized fixation information into a deep image representation. We show that we can robustly predict both the mental picture's category as well as attributes on a novel dataset containing fixation data of 14 users searching for targets on a subset of the DeepFahion dataset. Our results have important implications for future search interfaces and suggest deep gaze pooling as a general-purpose approach for gaze-supported computer vision systems.
机译:先前的工作着重于从人类注视中预测视觉搜索目标,但在现实世界中,通常不知道具体目标,例如为朋友寻找礼物时。在这项工作中,我们改为研究预测心理图片的问题,即仅是一个抽象的想法,而不是一个特定的目标。鉴于同一个目标类别的心理图片可能会因个人偏见而相差很大,并且特征性的目标属性通常不能被明确地表述,因此该任务的挑战性更大。相反,我们建议使用凝视信息作为用户心理图片上的隐式信息,并提出一种新颖的凝视池层,以将语义和局部注视信息无缝地集成到一个深层的图像表示中。我们表明,我们可以在包含14个用户在DeepFahion数据集子集上搜索目标的固定数据的新型数据集上,稳健地预测心理图片的类别和属性。我们的结果对未来的搜索界面具有重要意义,并建议将深层凝视池作为凝视支持的计算机视觉系统的通用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号